Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Blood Adv ; 7(15): 4170-4181, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37307197

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enters the respiratory tract, where it infects the alveoli epithelial lining. However, patients have sequelae that extend well beyond the alveoli into the pulmonary vasculature and, perhaps, beyond to the brain and other organs. Because of the dynamic events within blood vessels, histology does not report platelet and neutrophil behavior. Because of the rapid nontranscriptional response of these cells, neither single-cell RNA sequencing nor proteomics report robustly on their critical behaviors. We used intravital microscopy in level-3 containment to examine the pathogenesis of SARS-CoV-2 within 3 organs in mice expressing human angiotensin converting enzyme 2 (ACE-2) ubiquitously (CAG-AC-70) or on epithelium (K18-promoter). Using a neon-green SARS-CoV-2, we observed both the epithelium and endothelium infected in AC70 mice but only the epithelium in K18 mice. There were increased neutrophils in the microcirculation but not in the alveoli of the lungs of AC70 mice. Platelets formed large aggregates in the pulmonary capillaries. Despite only neurons being infected within the brain, profound neutrophil adhesion forming the nidus of large platelet aggregates were observed in the cerebral microcirculation, with many nonperfused microvessels. Neutrophils breached the brain endothelial layer associated with a significant disruption of the blood-brain-barrier. Despite ubiquitous ACE-2 expression, CAG-AC-70 mice had very small increases in blood cytokine, no increase in thrombin, no infected circulating cells, and no liver involvement suggesting limited systemic effects. In summary, our imaging of SARS-CoV-2-infected mice gave direct evidence that there is a significant perturbation locally in the lung and brain microcirculation induced by local viral infection leading to increased local inflammation and thrombosis in these organs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , COVID-19/patología , Inflamación/patología , Pulmón/diagnóstico por imagen , Pulmón/patología
3.
J Exp Med ; 220(3)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36745188

RESUMEN

Our oral cavity has evolved a capacity for rapid healing without scarring. In this issue of JEM, Ko et al. (2022. J. Exp. Med.https://doi.org/10.1084/jem.20221350) identify a Prx1+ fibroblast progenitor that drives oral regeneration by summoning pro-healing TGFß1+ macrophages.


Asunto(s)
Fibroblastos , Boca , Cicatrización de Heridas , Fibroblastos/citología , Macrófagos , Boca/citología , Células Madre/citología
4.
Clin Transl Med ; 12(11): e1121, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36424766

Asunto(s)
Macrófagos , Monocitos
5.
Nature ; 609(7925): 166-173, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35948634

RESUMEN

During infection, inflammatory monocytes are thought to be key for bacterial eradication, but this is hard to reconcile with the large numbers of neutrophils that are recruited for each monocyte that migrates to the afflicted tissue, and the much more robust microbicidal functions of the neutrophils. However, unlike neutrophils, monocytes have the capacity to convert to situationally specific macrophages that may have critical functions beyond infection control1,2. Here, using a foreign body coated with Staphylococcus aureus and imaging over time from cutaneous infection to wound resolution, we show that monocytes and neutrophils are recruited in similar numbers with low-dose infection but not with high-dose infection, and form a localization pattern in which monocytes surround the infection site, whereas neutrophils infiltrate it. Monocytes did not contribute to bacterial clearance but converted to macrophages that persisted for weeks after infection, regulating hypodermal adipocyte expansion and production of the adipokine hormone leptin. In infected monocyte-deficient mice there was increased persistent hypodermis thickening and an elevated leptin level, which drove overgrowth of dysfunctional blood vasculature and delayed healing, with a thickened scar. Ghrelin, which opposes leptin function3, was produced locally by monocytes, and reduced vascular overgrowth and improved healing post-infection. In sum, we find that monocytes function as a cellular rheostat by regulating leptin levels and revascularization during wound repair.


Asunto(s)
Leptina , Monocitos , Neovascularización Fisiológica , Infecciones Estafilocócicas , Staphylococcus aureus , Cicatrización de Heridas , Adipocitos/citología , Adipocitos/metabolismo , Animales , Cicatriz , Ghrelina/metabolismo , Leptina/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Monocitos/citología , Monocitos/metabolismo , Neutrófilos/citología , Neutrófilos/inmunología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/fisiología
6.
PLoS Pathog ; 17(9): e1009944, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34543348

RESUMEN

Intracellular infection with the parasite Leishmania major features a state of concomitant immunity in which CD4+ T helper 1 (Th1) cell-mediated immunity against reinfection coincides with a chronic but sub-clinical primary infection. In this setting, the rapidity of the Th1 response at a secondary site of challenge in the skin represents the best correlate of parasite elimination and has been associated with a reversal in Leishmania-mediated modulation of monocytic host cells. Remarkably, the degree to which Th1 cells are absolutely reliant upon the time at which they interact with infected monocytes to mediate their protective effect has not been defined. In the present work, we report that CXCR3-dependent recruitment of Ly6C+ Th1 effector (Th1EFF) cells is indispensable for concomitant immunity and acute (<4 days post-infection) Th1EFF cell-phagocyte interactions are critical to prevent the establishment of a permissive pathogen niche, as evidenced by altered recruitment, gene expression and functional capacity of innate and adaptive immune cells at the site of secondary challenge. Surprisingly, provision of Th1EFF cells after establishment of the pathogen niche, even when Th1 cells were provided in large quantities, abrogated protection, Th1EFF cell accumulation and IFN-γ production, and iNOS production by inflammatory monocytes. These findings indicate that protective Th1 immunity is critically dependent on activation of permissive phagocytic host cells by preactivated Th1EFF cells at the time of infection.


Asunto(s)
Inmunidad Celular/inmunología , Leishmaniasis Cutánea/inmunología , Monocitos/inmunología , Células TH1/inmunología , Animales , Leishmania major/inmunología , Ratones Endogámicos C57BL
7.
Biomaterials ; 275: 120775, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34243039

RESUMEN

Biofilms that form on implanted medical devices cause recalcitrant infections. The early events enabling contaminating bacteria to evade immune clearance, before a mature biofilm is established, are poorly understood. Live imaging in vitro demonstrated that Staphylococcus aureus sparsely inoculated on an abiotic surface can go undiscovered by human neutrophils, grow, and form aggregates. Small (~50 µm2) aggregates of attached bacteria resisted killing by human neutrophils, resulting in neutrophil lysis and bacterial persistence. In vivo, neutrophil recruitment to a peritoneal implant was spatially heterogenous, with some bacterial aggregates remaining undiscovered by neutrophils after 24 h. Intravital imaging in mouse skin revealed that attached S. aureus aggregates grew and remained undiscovered by neutrophils for up to 3 h. These results suggest a model in which delayed recruitment of neutrophils to an abiotic implant presents a critical window in which bacteria establish a nascent biofilm and acquire tolerance to neutrophil killing.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Biopelículas , Evasión Inmune , Ratones , Infiltración Neutrófila , Neutrófilos
8.
Cell Rep ; 36(4): 109462, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34320352

RESUMEN

Skin is one of the most common sites of host immune response against Staphylococcus aureus infection. Here, through a combination of in vitro assays, mouse models, and intravital imaging, we find that S. aureus immune evasion in skin is controlled by a cascade composed of the ArlRS two-component regulatory system and its downstream effector, MgrA. S. aureus lacking either ArlRS or MgrA is less virulent and unable to form correct abscess structure due to de-repression of a giant surface protein, Ebh. These S. aureus mutants also have decreased expression of immune evasion factors (leukocidins, chemotaxis-inhibitory protein of S. aureus [CHIPS], staphylococcal complement inhibitor [SCIN], and nuclease) and are unable to kill neutrophils, block their chemotaxis, degrade neutrophil extracellular traps, and survive direct neutrophil attack. The combination of disrupted abscess structure and reduced immune evasion factors makes S. aureus susceptible to host defenses. ArlRS and MgrA are therefore the main regulators of S. aureus immune evasion and promising treatment targets.


Asunto(s)
Proteínas Bacterianas/metabolismo , Evasión Inmune , Piel/microbiología , Piel/patología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Animales , Adhesión Bacteriana , Muerte Celular , Quimiotaxis , Trampas Extracelulares/metabolismo , Imagenología Tridimensional , Ratones Endogámicos C57BL , Modelos Biológicos , Mutación/genética , Neutrófilos/metabolismo , Fagocitosis , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/patogenicidad , Virulencia , alfa-Defensinas/metabolismo
9.
Sci Rep ; 11(1): 15357, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321507

RESUMEN

Staphylococcus aureus virulence has been associated with the production of phenol-soluble modulins (PSMs). These PSMs have distinct virulence functions and are known to activate, attract and lyse neutrophils. These PSM-associated biological functions are inhibited by lipoproteins in vitro. We set out to address whether lipoproteins neutralize staphylococcal PSM-associated virulence in experimental animal models. Serum from both LCAT an ABCA1 knockout mice strains which are characterised by near absence of high-density lipoprotein (HDL) levels, was shown to fail to protect against PSM-induced neutrophil activation and lysis in vitro. Importantly, PSM-induced peritonitis in LCAT-/- mice resulted in increased lysis of resident peritoneal macrophages and enhanced neutrophil recruitment into the peritoneal cavity. Notably, LCAT-/- mice were more likely to succumb to staphylococcal bloodstream infections in a PSM-dependent manner. Plasma from homozygous carriers of ABCA1 variants characterized by very low HDL-cholesterol levels, was found to be less protective against PSM-mediated biological functions compared to healthy humans. Therefore, we conclude that lipoproteins present in blood can protect against staphylococcal PSMs, the key virulence factor of community-associated methicillin resistant S. aureus.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/genética , Lipoproteínas HDL/sangre , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Infecciones Estafilocócicas/genética , Animales , Toxinas Bacterianas/genética , Biopelículas/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Lipoproteínas HDL/genética , Ratones , Ratones Noqueados , Neutrófilos/microbiología , Infecciones Estafilocócicas/sangre , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Factores de Virulencia/genética
10.
J Exp Med ; 217(4)2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31978220

RESUMEN

Every day, megakaryocytes produce billions of platelets that circulate for several days and eventually are cleared by the liver. The exact removal mechanism, however, remains unclear. Loss of sialic acid residues is thought to feature in the aging and clearance of platelets. Using state-of-the-art spinning disk intravital microscopy to delineate the different compartments and cells of the mouse liver, we observed rapid accumulation of desialylated platelets predominantly on Kupffer cells, with only a few on endothelial cells and none on hepatocytes. Kupffer cell depletion prevented the removal of aged platelets from circulation. Ashwell-Morell receptor (AMR) deficiency alone had little effect on platelet uptake. Macrophage galactose lectin (MGL) together with AMR mediated clearance of desialylated or cold-stored platelets by Kupffer cells. Effective clearance is critical, as mice with an aged platelet population displayed a bleeding phenotype. Our data provide evidence that the MGL of Kupffer cells plays a significant role in the removal of desialylated platelets through a collaboration with the AMR, thereby maintaining a healthy and functional platelet compartment.


Asunto(s)
Asialoglicoproteínas/metabolismo , Plaquetas/metabolismo , Galactosa/metabolismo , Macrófagos del Hígado/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de la Membrana/metabolismo , Fagocitosis , Animales , Anticuerpos/inmunología , Asialoglicoproteínas/inmunología , Células Cultivadas , Voluntarios Sanos , Humanos , Lectinas Tipo C/inmunología , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo
11.
Front Cell Infect Microbiol ; 10: 592022, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33643928

RESUMEN

Paracoccidioidomycosis is a systemic fungal disease, considered endemic in Latin America. Its etiological agents, fungi of the Paracoccidioides complex, have restricted geographic habitat, conidia as infecting form, and thermo-dimorphic characteristics. Polymorphonuclear neutrophils (PMNs) are responsible for an important defense response against fungus, releasing Neutrophil Extracellular Traps (NETs), which can wrap and destroy the yeasts. However, it has been described that some pathogens are able to evade from these DNA structures by releasing DNase as an escape mechanism. As different NETs patterns have been identified in PMNs cultures challenged with different isolates of Paracoccidioides brasiliensis, the general objective of this study was to identify if different patterns of NETs released by human PMNs challenged with Pb18 (virulent) and Pb265 (avirulent) isolates would be correlated with fungal ability to produce a DNase-like protein. To this end, PMNs from healthy subjects were isolated and challenged in vitro with both fungal isolates. The production, release, and conformation of NETs in response to the fungi were evaluated by Confocal Microscopy, Scanning Microscopy, and NETs Quantification. The identification of fungal DNase production was assessed by DNase TEST Agar, and the relative gene expression for hypothetical proteins was investigated by RT-qPCR, whose genes had been identified in the fungal genome in the GenBank (PADG_11161 and PADG_08285). It was possible to verify the NETs release by PMNs, showing different NETs formation when in contact with different isolates of the fungus. The Pb18 isolate induced the release of looser, larger, and more looking like degraded NETs compared to the Pb265 isolate, which induced the release of denser and more compact NETs. DNase TEST Agar identified the production of a DNase-like protein, showing that only Pb18 showed the capacity to degrade DNA in these plates. Besides that, we were able to identify that both PADG_08528 and PADG_11161 genes were more expressed during interaction with neutrophil by the virulent isolate, being PADG_08528 highly expressed in these cultures, demonstrating that this gene could have a greater contribution to the production of the protein. Thus, we identified that the virulent isolate is inducing more scattered and loose NETs, probably by releasing a DNase-like protein. This factor could be an important escape mechanism used by the fungus to escape the NETs action.


Asunto(s)
Trampas Extracelulares , Paracoccidioides , Paracoccidioidomicosis , Desoxirribonucleasas , Humanos , Neutrófilos , Paracoccidioides/genética
12.
J Leukoc Biol ; 106(2): 323-335, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30776153

RESUMEN

It has long been appreciated that understanding the interactions between the host and the pathogens that make us sick is critical for the prevention and treatment of disease. As antibiotics become increasingly ineffective, targeting the host and specific bacterial evasion mechanisms are becoming novel therapeutic approaches. The technology used to understand host-pathogen interactions has dramatically advanced over the last century. We have moved away from using simple in vitro assays focused on single-cell events to technologies that allow us to observe complex multicellular interactions in real time in live animals. Specifically, intravital microscopy (IVM) has improved our understanding of infection, from viral to bacterial to parasitic, and how the host immune system responds to these infections. Yet, at the same time it has allowed us to appreciate just how complex these interactions are and that current experimental models still have a number of limitations. In this review, we will discuss the advances in vivo IVM has brought to the study of host-pathogen interactions, focusing primarily on bacterial infections and innate immunity.


Asunto(s)
Enfermedades Transmisibles/etiología , Interacciones Huésped-Patógeno/inmunología , Inmunidad , Animales , Enfermedades Transmisibles/diagnóstico , Enfermedades Transmisibles/metabolismo , Diagnóstico por Imagen/métodos , Susceptibilidad a Enfermedades , Humanos , Inmunidad Innata , Microscopía Intravital , Especificidad de Órganos , Índice de Severidad de la Enfermedad
13.
Arterioscler Thromb Vasc Biol ; 37(1): 35-42, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27765768

RESUMEN

Monocytes are circulating leukocytes important in both innate and adaptive immunity, primarily functioning in immune defense, inflammation, and tissue remodeling. There are 2 subsets of monocytes in mice (3 subsets in humans) that are mobilized from the bone marrow and recruited to sites of inflammation, where they carry out their respective functions in promoting inflammation or facilitating tissue repair. Our understanding of the fate of these monocyte subsets at the site of inflammation is constantly evolving. This brief review highlights the plasticity of monocyte subsets and their conversion during inflammation and injury.


Asunto(s)
Plasticidad de la Célula , Inflamación/inmunología , Monocitos/inmunología , Cicatrización de Heridas , Animales , Quimiotaxis de Leucocito , Hemostasis , Humanos , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Monocitos/clasificación , Monocitos/metabolismo , Monocitos/patología , Fenotipo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...